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ABSTRACT

Curcumin is a biologically active phytochemical which manifests therapeutic activities in numerous 
health conditions, including cancer. Several curcuminoids obtained naturally and synthesized artificially 
also showcase anti-cancer and anti-tumorigenic effects. However, its water insolubility poses difficulties 
in its application to biological systems, lowering its availability in living tissues, which can be overcome 
by using various micro-encapsulation and nano-formulations of curcumin. When used in combination 
with other chemotherapeutic drugs, curcumin enhances the anti-carcinogen potential and reduces the 
side effects induced via chemotherapy. Structural modelling of basic pharmacophores of curcumin can 
enhance its biological and pharmacokinetic properties, as revealed by structure-activity relationship 
studies of curcumin. Various clinical trials of curcumin have proven its worth as an anti-neoplastic agent 
in humans, with minimal side effects. Its mechanism of action involves blockage of cell-signalling path-
ways and cellular enzymes, promotion of immunomodulatory effects and induction of programmed cell 
death in cancerous cells. Curcumin is an interesting molecule with diverse effects on various diseases, 
but its absolute potential has yet to be reached. Hence, more in-depth studies and clinical trials are 
needed. This review outlines curcumin’s chemical properties and summarizes its anti-cancer and phar-
macokinetic potential. 
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INTRODUCTION

Spices impart colour, aroma and taste to food and 
have been used as condiments worldwide for ages. Due 
to the presence of several bioactive compounds such as 
antioxidants, some spices are also used as medicine and 
have various health benefits. For example, curcumin in 
turmeric, eugenol in cloves and capsaicin in red pepper 
are known to control cellular oxidation. These prevent 
the production of oxygen-free radicals and also interfere 
with the signal transduction pathways1,2. Compounds 
such as curcumin and thymoquinone regulate various 

inflammatory processes. Some spices belonging to the 
genus Cinnamomum possess antimicrobial properties3

’
4. 

Certain compounds in spices, such as thymoquinone, 
exhibit regulatory effects on the immune system5,6.  In short,  
spices elicit antioxidant7-12, immunomodulatory and anti-
inflammatory13-15 effects. Since growth and metastasis of 
cancer are linked with inflammatory reactions13-14 immune 
responses and oxidative stress, spices can be used as 
an alternative to treat and prevent cancer16-19.

The majority of deaths across the globe are caused 
due to cancer. As per the data of 2020, out of the 19 
million new cases of cancer reported, there were about 9.9 
million deaths across the globe. This number will increase 
by about 70% in the next 20 years. The most extensive 
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Fig. 1: Structure of (1) Curcumin, (2) Demethoxycurcumin, (3) Bis-demthoxycurcumin1-2

approaches for cancer treatment are radiotherapy, surgery 
and chemotherapy. Radiation and surgery are plausible 
only if a tumour is small and localized. Chemotherapy 
is practical only for small-sized tumours20,21. Moreover, 
these treatments may produce certain side effects. 
Hence, it is necessary to have new anti-cancer drugs 
which can minimize the side effects. Spices are such 
alternatives which can reduce indigestion, nausea and 
vomiting induced by chemotherapy22,23. This review 
outlines curcumin’s chemical properties and summarizes 
its anti-cancer and pharmacokinetic potential. SAR and 
the mechanism of action of curcumin have also been 
discussed.

TURMERIC AND CURCUMIN

Occurrence of curcumin
Turmeric (vernacular name: Haldi) is a flavouring 

substance that imparts yellow colour to Asian food. It 
has been used as a medicine in the Indian Ayurveda for 
millennia. Curcumin (1), the main pigment of turmeric, is 
a yellow-coloured polyphenolic compound24-26.

Extracted from the underground  rhizome of Curcuma 
longa, curcumin, a secondary metabolite, possesses 
anti-tumorigenic, anti-cancer, antioxidant, anti-microbial, 
anti-alzheimer and anti-arthritic characteristics. The 
radical trapping ability of curcumin makes it useful as an 
anti-oxidant24-38. Curcumin has also been reported in the 
rhizomes of various Zingiberaceae plants, such as C. 
zedoaria39. Curcumin, along with some curcumin-related 
diarylhepatnoids, were found in C. xanthoriza40. Using 
high-performance liquid chromatography, a large amount 
of curcumin was detected in the rhizomes of Zingiber 
cassumunar41. In C. zerumbet, curcumin, diterpenes, and 
flavonoids were identified in the rhizomes42. Presence of 
curcumin in C. aromatic43, C. hyneana44, C. chuanyujin45, C. 

phaeocaulis46, C. areruginosa44, C.amada47, C. 
wenyujin48, C.soloensis44, C.oligantha49 and C. mannga44, 
has been ascertained using modern analytical methods, 
namely, nuclear magnetic resonance spectroscopy, 
high-performance thin-layer chromatography, photodiode 
array detection-high performance liquid chromatography, 
liquid chromatography-mass spectroscopy. Rhizomes 
of Curcuma spp. also contain curcuminoids, 
phenolic compounds structurally related to curcumin. 
Demethoxycurcumin (2) and bis-demethoxycurcumin 
(3), are the chief curcuminoids present in curcumin-
containing rhizomes (Fig. 1). Attempts have been made 
to isolate and estimate these compounds to study their 
physical chemical and biological characteristics. These 
curcuminoids were isolated successfully for the first 
time by implementing reversed-phase HPLC and TLC50. 
Other more accurate and rapid techniques like UPLC 
(Ultra Performance Liquid Chromatography) and LC-
MS/MS have also been employed for the isolation and 
quantitative analysis of curcuminoids51,52. The occurrence 
of curcuminoids in nature is quite rampant (Table I)—
Uehara et al. isolated hydrated curcumin derivative (4) 
in the rhizomes of C. xanthorrhiza53. Similar hydrated 
curcuminoids were also identified in the rhizomes of C. 
longa54. Another curcumin analogue, 5’-methoxycurcumin 
(5), a potent antioxidant, was isolated by Masuda et 
al. from the rhizomes of C. xanthorrhiza55. Three curcumin 
analogues, cassumunins A, B and C (6-8), exhibiting 
antioxidant and anti-inflammatory effects, were found in Z. 
cassumunar56. A 5’-substitued derivative, bisabocurcumin 
(9), was obtained from C. longa57. Alpinia blepharocalyx, 
a Zingiberaceae family plant, produces seeds that 
embody diarylheptanoids and a dihydro-analogue of 
bis-demethoxycurcumin58. Two derivatives of curcumin 
(10, 11), belonging to diarylheptanoid family have been 
obtained from the rhizomes of C. domestica 59. Further, 
the rhizomes of Z. cassumunar constituted three 
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Fig. 1: Structure of (1) Curcumin, (2) Demethoxycurcumin,  

(3) Bis-demthoxycurcumin1-2 

Extracted from the underground stem of Curcuma longa, curcumin, a secondary metabolite, 

possesses anti-tumorigenic, anti-cancer, antioxidant, anti-microbial, anti-alzheimer, and anti-

arthritic characteristics. The radical trapping ability of curcumin makes it useful as an anti-

oxidant24-38. Curcumin has also been reported in the rhizomes of various Zingiberaceae 

plants, such as C. zedoaria39. Curcumin, along with some curcumin-related diarylhepatnoids, 

were found in C. xanthoriza40. Using high-performance liquid chromatography, a large 

amount of curcumin was detected in the rhizomes of Zingiber cassumunar41. In C. zerumbet, 

curcumin, diterpenes, and flavonoids were present in the rhizomes42. Presence of curcumin in 

C. aromatic43, C. hyneana44, C. chuanyujin45, C. phaeocaulis46, C. 
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been ascertained using modern analytical methods namely, nuclear magnetic resonance 
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Table I: Some natural curcuminoids53-57, 59-61  

Structure No. Structure of curcumin compound Name of plant References
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CHEMISTRY OF CURCUMIN 

Curcumin (diferuloylmethane) is a phytochemical, having the IUPAC name (1E,6E)-1,7-

bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (Fig. 2). 

 

Fig. 2:  (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione24 

Curcumin, having a molecular weight of 368.38 g mol-1, is a lipophilic compound with poor 

solubility in aqueous medium but fairly soluble in ethanol, DMSO (dimethylsulfoxide) and 

other organic solvents. Its melting point is 183 °C. It has an intense yellow colour in acidic 

and neutral solutions, which changes to deep red in an alkaline medium. Curcumin has two 

phenolic and enolizable β-diketone moieties. Due to conjugated phenolic, olefinic and 

diketone units, curcumin possesses distinct chemical properties. 

EFFECT OF pH 

Curcumin exists in keto-enol tautomerism. The keto-form is predominant in acidic and 

neutral solutions as well as the cell membrane62. At pH 3 to 7, curcumin is a potent donor of 
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Fig. 3: Tautomerism of curcumin62, 63
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H-atom. Beyond pH 8, curcumin exists in an enolate form and acts primarily as an electron 

donor. This contributes to its radical scavenging ability63. 

 

Fig. 3: Tautomerism of curcumin62, 63 

The keto tautomer (Fig. 3) can exist in cis and trans forms. pH, temperature, and solvent 

polarity remarkably affect the keto-enol equilibrium64. The pharmacological activities of 

curcumin are greatly affected by the keto-enol ratio65. A study investigated the keto-enol 

tautomers of curcumin via liquid chromatography/mass spectroscopy and revealed that in 

water/ acetonitrile solution, curcumin existed in enol form66. However, in non-polar solvents 

like CCl4 and solid state, the keto form is predominant. 

DEGRADATION PRODUCTS OF CURCUMINOIDS 

In the presence of sunlight, curcuminoids underwent photo-oxidation, which resulted in their 

oxidative cleavage yielding p-hydroxybenzaldehyde, p-hydroxybenzoic acid, ferulic 

aldehyde, ferulic acid, vanillin and vanillic acid as the degradation products67. Tønnesen et 

al. reported that on photo-oxidation, a cyclic derivative of curcumin is obtained68 (Fig.4). The 

defiance of photo-oxidation by curcuminoids has also been analyzed. Price and Buescher 

studied the effects of oxygen and solvent systems on the photo-oxidation of curcuminoids. 

Curcumin was the most stable curcuminoid in methanol sparged with air, while 

demethoxycurcumin had the greatest stability in methanol sparged with nitrogen against 

light-induced oxidation69. On exposure to ozone, the brilliant yellow hue of curcumin faded 

Fig. 4: Photo-oxidation of curcumin69
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due to its decomposition to vanillin and vanillic acid via the electrophilic addition of ozone to 

the olefinic bonds of curcumin70. 

 

Fig. 4: Photo-oxidation of curcumin69 

The lipoxygenase-catalyzed oxidation of curcumin yielded an interesting rearranged product 

as reported by Schneider and coworkers71,72 (Fig. 5). 

 

Fig. 5: Product obtained from oxidation of curumin by lipoxygenase71,72 

On biomimetic oxidation with hydrogen peroxide catalyzed by [TAPFe (III) Cl], curcumin 

afforded a C-C coupled dimer73 (Fig. 6).  

 

Fig. 6: Dimer of curcumin formed by H2O2 catalyzed oxidation of curcumin73 

curcuminoids with a modified alkyl region, known as 
cassumunarins A-C (12-14). These possess anti-
inflammatory and antioxidant properties60. Another 
curcuminoid, calebin A (15), isolated from C. longa, has 
methoxy groups too and is found to be beneficial in  
treatment of Alzheimer’s disease61. 

CHEMISTRY OF CURCUMIN
Curcumin (diferuloylmethane) is a phytochemical, 

having the IUPAC name (1E,6E)-1,7-bis(4-hydroxy-3-
methoxyphenyl)-1,6-heptadiene-3,5-dione (Fig. 2).

phenolic, olefinic and diketone units, curcumin possesses 
distinct chemical properties.

EFFECT OF pH

Curcumin exists in keto-enol tautomeric forms. In 
acidic and neutral solutions keto form is more stabilized62. 
At pH 3 to 7, curcumin is a potent donor of H-atom. 
Beyond pH 8, curcumin exists in an enolate form and 
acts primarily as an electron donor. This contributes to 
its radical scavenging ability63.

The keto tautomer (Fig. 3) can exist in cis and trans 
forms. pH, temperature, and solvent polarity remarkably 
affect the keto-enol equilibrium64. The pharmacological 
activities of curcumin are greatly affected by the keto-
enol ratio65. Tautomers of curcumin separated via liquid 
chromatography/mass spectroscopy revealed that in 
water/ acetonitrile solution, curcumin existed in the enol 
form66. However, in non-polar solvents like CCl4 and solid 
state, the keto form is predominant.

DEGRADATION PRODUCTS OF CURCUMINOIDS
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photo-oxidation, which result in their oxidative cleavage 
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acid, ferulic aldehyde, ferulic acid, vanillin and vanillic 
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Fig. 3: Tautomerism of curcumin62, 63 

Curcumin, having molecular weight of 368.38 g 
mol-1, is a lipophilic compound with poor solubility in 
aqueous medium but fairly soluble in ethanol, DMSO 
(dimethylsulfoxide) and other organic solvents. Its melting 
point is 183 °C. It has an intense yellow colour in acidic 
and neutral solutions, which changes to deep red in an 
alkaline medium. Curcumin has two phenolic moieties 
and an enolizable β-diketone moiety. Due to conjugated 



INDIAN DRUGS 61 (05) MAY 2024 11 

9 
 

due to its decomposition to vanillin and vanillic acid via the electrophilic addition of ozone to 

the olefinic bonds of curcumin70. 

 

Fig. 4: Photo-oxidation of curcumin69 

The lipoxygenase-catalyzed oxidation of curcumin yielded an interesting rearranged product 

as reported by Schneider and coworkers71,72 (Fig. 5). 

 

Fig. 5: Product obtained from oxidation of curumin by lipoxygenase71,72 

On biomimetic oxidation with hydrogen peroxide catalyzed by [TAPFe (III) Cl], curcumin 

afforded a C-C coupled dimer73 (Fig. 6).  

 

Fig. 6: Dimer of curcumin formed by H2O2 catalyzed oxidation of curcumin73 

9 
 

due to its decomposition to vanillin and vanillic acid via the electrophilic addition of ozone to 

the olefinic bonds of curcumin70. 

 

Fig. 4: Photo-oxidation of curcumin69 

The lipoxygenase-catalyzed oxidation of curcumin yielded an interesting rearranged product 

as reported by Schneider and coworkers71,72 (Fig. 5). 

 

Fig. 5: Product obtained from oxidation of curumin by lipoxygenase71,72 

On biomimetic oxidation with hydrogen peroxide catalyzed by [TAPFe (III) Cl], curcumin 

afforded a C-C coupled dimer73 (Fig. 6).  

 

Fig. 6: Dimer of curcumin formed by H2O2 catalyzed oxidation of curcumin73 

Fig. 5: Product obtained from oxidation of curcumin by lipoxygenase71,72

been analyzed. Price and Buescher studied the effects 
of oxygen and solvent systems on the photo-oxidation of 
curcuminoids. Curcumin was the most stable curcuminoid 
in methanol sparged with air, while demethoxycurcumin 
had the greatest stability in methanol sparged with 
nitrogen against light-induced oxidation69. On exposure 
to ozone, the brilliant yellow hue of curcumin faded due 
to its decomposition to vanillin and vanillic acid via the 
electrophilic addition of ozone to the olefinic bonds of 
curcumin70.

The lipoxygenase-catalyzed oxidation of curcumin 
yielded an interesting rearranged product, as reported 
by Schneider and coworkers71,72 (Fig. 5).

On biomimetic oxidation with hydrogen peroxide 
catalyzed by [TAPFe (III) Cl], curcumin afforded a C-C 
coupled dimer73 (Fig. 6). 

The poor solubility of curcumin in water limits its 
application in biological systems. Although curcumin 
dissolves in an alkaline medium, its stability is highly 
reduced in such conditions. In addition, various degradation 
products are formed. A study delineated ferulic acid and 
feruloyl methane formation by the alkaline degradation 

of curcumin via retro-Claisen condensation74.  Another  
study on the kinetics of curcumin degradation revealed 
that the decomposition was pH-dependent and faster 
in alkaline medium, where nearly 90% of curcumin 
decomposed within 30 minutes.

The initial product obtained on alkaline degradation 
of curcumin was trans-6-(4’-hydroxy-3’-methoxy- 
phenyl)-2,4-dioxo-5-hexanal, the chief product, while 
ferulic acid, feruloyl methane and vanillin were obtained 
as minor products62 (Fig. 7). Alkaline degradation 
of curcumin obeyed pseudo-first-order kinetics and the 
rates were maximum at pH 10.275.

STRUCTURE ACTIVITY RELATIONSHIP
Remodelling the chemical structure of a drug not 

only influences its receptor binding and pharmacological 
activity but also affects its physiochemical properties 
and pharmacokinetics76. An in-depth analysis of a drug 
molecule’s natural and synthetic analogues is necessary 
to determine the key pharmacophore present in its 
structure77. Curcumin contains  two hydroxy and methoxy-
substituted phenyl rings, connected via a keto-enol linker 
of 7-C atoms. Although it is derived naturally, its chemical 

Fig. 6: Dimer of curcumin formed by H2O2 catalyzed oxidation of curcumin73
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conditions. In addition, various degradation products are formed. A study delineated ferulic 

acid and feruloyl methane formation by the alkaline degradation of curcumin via retro-

Claisen condensation74. Another study on the kinetics of curcumin degradation disclosed that 

the decomposition was pH-dependent and faster in alkaline medium, where nearly 90% of 

curcumin decomposed within 30 minutes. 

 

Fig. 7: Products of alkaline hydrolysis of curcumin70 

The initial product obtained on alkaline degradation of curcumin wasTrans-6-(4’-hydroxy-3’-

methoxyphenyl)-2,4-dioxo-5-hexanal, which was also the major product while ferulic acid, 

feruloyl methane and vanillin were obtained as minor products62 (Fig. 7). Alkaline 

degradation of curcumin obeyed pseudo-first-order kinetics and the rates were maximum at 

pH 10.275. 

STRUCTURE ACTIVITY RELATIONSHIP 

Remodelling the chemical structure of a drug not only influences its receptor binding and 

pharmacological activity but also affects its physiochemical properties and 

Fig. 7: Products of alkaline hydrolysis of curcumin70

analogues can be prepared by the reaction of aromatic 
aldehydes and acetylacetone; multiple analogues have 
been synthesized using this assembly method for instance, 
compounds having alkyl substituents at 4th carbon of 
the C7 linker. Synthesis of such modified derivatives 
leads to the production of potent anti-cancer drugs that 
inhibit cell growth in various stages of cancer78,79. SAR 
studies shown that coplanarity of β-diketone moiety and 
the H-atom donating group in curcumin analogues were 
essential for antiandrogenic activity.

Further, its antiandrogenic activity was enhanced 
significantly on shortening of diketone linker moiety from 
seven (C7) to five carbon atoms (C5)80. The introduction 
of the -CH3 at both second and six positions of carbon 
resulted in a new curcumin derivative. Due to the steric 
hindrance offered by methyl groups on the double bonds, 
this derivative gained resistance against reduction by 
metabolizing enzymes81. In addition, it caused a more 
pronounced inhibition of proliferation of endothelial cells 
than curcumin  both  in  vitro  and in  vivo81.  Dimethylcurcumin 
or 1,7-bis-(3,4-dimethoxyphenyl)-5-hydroxyhepta-1,4,6-
trien-3-one (ASC-J9), a newly developed analogue of 
curcumin, enhanced the disintegration of androgen 
receptor (AR) and efficiently arrested the proliferation and 
invasion of castration-resistant prostate cancer (CRPC) 
cells82-84. It was also found effective for restricting the 
expansion of estrogen-dependent MCF-7 breast cancer 
cells85. Even though the activity and target ability of the 
molecule was enhanced by methylation, its hydrophobic 
character also increased several fold compared to 
curcumin, which fettered its administrable dosage in 
cancer treatment86.

Moreover, new curcumin analogues synthesized by 
glycosylation of aromatic ring (pharmacophore) improved 
aqueous solubility and kinetic stability of the molecule. 
This, caused the betterment of therapeutic activity of 

the molecule87. Curcumin undergoes metabolism via 
oxidation, reduction and conjugation (glucuronidation 
and sulfation). Conjugation occurs at the 4’OH groups on 
both the curcumin phenyl rings. This masking of the 4’OH 
groups enhances the stability of the molecule.

Additionally, it was found that the absence of methoxy 
groups in curcumin analogues reduced its therapeutic 
effect88. Furthermore, the addition of hydrophobic 
substituent to the C-4 position of the linker improved 
the antiandrogenic activities89. Negatively charged 
substituent or hydrogen bond acceptors at R1, R2, R3, 
and R4 positions (Fig. 8) also enhanced the biological 
activity of the molecule90. 

Another study pointed out that the methoxy group 
on the phenyl ring played a crucial role in inhibiting TNF-
induced NF-κB activation. Thus, the relative potencies 
of curcumin analogues follow the order: curcumin > 
demethoxycurcumin > bis-demethoxycurcumin91. Tet-
rahydrocurcumin (THC) was inactive due to the absence 
of conjugated double bonds in the linker91. Certain 
derivatives of curcumin, such as THC, possessing a 
saturated diketone moiety, high level of hydrogenation 
and lower levels of methoxylation, exhibited enhanced 
anti-cancer and anti-inflammatory activities compared 
to curcumin92. A comparative study on curcumin and its 
modified analogues indicated that o-methoxy substituted 
phenolic units of curcumin displayed higher antioxidant 
activity. Also the hydrogenation of conjugated double 
bonds of the C7 linker in curcumin to THC significantly 
amplified antioxidant activity93. For instance, the antioxi-
dant activity of THC was remarkably higher than dihydro 
curcumin (DHC) and unmodified curcumin94,95. Curcumin, 
possessing an α,β-unsaturated ketone unit, inhibited the 
activation of STAT3 and induced apoptosis. However, 
THC, devoid of such an electrophilic moiety, could not 
restrain the STAT3 signalling pathway. Hence, curcumin’s 
electrophilic character is crucial for STAT3 inhibition during 
cancer treatment96. Construction of Cu2+/ Ni2+/ Zn2+-cur-
cumin-conjugated DNA complexes increased curcumin’s 
solubility and emphasized its DNA-binding ability. Such 
complexes exhibited stronger antibacterial activity and 
enhanced cytotoxicity against several prostate cancer 
cell lines97. Besides anticancer and anti-inflammatory 
action, curcuminoids also manifest neuroprotective ef-
fects against lead-induced neurotoxicity. This is done 
primarily by chelate formation by the diketone moiety98. 
The conjugated diketone moiety of curcumin is the key 
pharmacophore which causes the suppression of NF-κB 
transcription factor. However, no specific connection was 
found between the inhibitory activity of curcumin and its 
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analogues against NF-κB with the antioxidant activity99. 
The pH responsive property of curcumin was utilized in 
synthesizing curcumin-based nano-assemblies, which 
augmented the anti-cancer potential of curcumin via 
disruption of endosomes100. 

EFFECT OF CURCUMIN ON CANCER
Despite noteworthy advances in medicine, cancer 

is still regarded as the most invasive and fatal disease. 
The naturally occurring polyphenol curcumin exhibits 
anti-cancer properties and is capable of preventing, 
delaying, and reversing the carcinogenesis process. It 
induces apoptosis in a variety of tumour cells, modulates 
signal transduction pathways, alters gene expressions 
and inhibits tumour growth. The mechanism of its cancer-
preventive action in various types of cancers has been 
reviewed below.

Nasopharyngeal cancer
In human nasopharyngeal carcinoma (NPC-TW 

076) cells, curcumin impelled G2/M phase arrest and 
programmed cell death, the regulation of which was found 
to be correlated with apoptosis-inducing factor, caspase-
3-dependent pathways and depolarization of mito- 
chondria101. In a similar study, the proliferation of CNE-2z 
human NPC cell lines was substantially inhibited by 
curcumin and apoptosis was prompted by activating 
caspase-3, which was related to the negative-regulation of 
Bcl-2, NF-κB and positive-regulation of Bax102. Moreover, 
the radio sensitivity of NPC, which is correlated with 
lnc RNAs (long non-coding RNAs) profiles, was also 
influenced by curcumin. Curcumin remarkably altered the 
expression of lncRNAs and mRNAs. lncRNAs have an 
important role in IR-induced radio-resistance. Curcumin 
caused reversal of IR-induced differentially expressed 

lncRNAs in nasopharyngeal cancer cells and hence, 
enhanced their radio sensitivity103. Another study revealed 
that curcumin obstructed microRNA-125a-5p expression, 
and subsequently, TP53(tumour protein 53) gene 
expression was amplified, thus, inhibiting NPC activity104. 
In an in vitro study conducted on mouse xenografts, the 
uncontrolled NPC growth was hampered by curcumin. In 
the ERK-1/2 signalling pathway, protein expression was 
also altered by curcumin105.

Lung cancer
In small-cell lung carcinoma, curcumin treatment 

enhanced Bax expression, while Bcl-xL and Bcl-2 
expressions were suppressed, leading to apoptosis. This 
was caused by an increase in intracellular ROS (reactive 
oxygen species) levels. Curcumin also caused an abrupt 
decrement in the mitochondrial membrane potential and 
the released cytochrome-c into the cytosol; caspase-3 
and caspase-9 were also activated later106. Furthermore, 
curcumin treatment attenuated the enzymatic activity 
of EGFR107. In another study, the EGR-1(early growth 
responses) modulated the crosstalk between Wnt 
signalling pathways and adherens junctions, proving 
that EGR-1 controlled the proliferation and invasion of 
cells. It was validated that a reduction in EGR-1 was 
caused by curcumin treatment. Anti-proliferation and 
anti-migration activities were also exhibited by curcumin 
in NSCLC108.  According to a study, in SCC (squamous 
cell lung carcinoma) tumours, the therapeutic target was 
the STAT3. The PIAS3 was responsible for the inhibition 
of STAT3 endogenously, but its expression in SCC tumour 
cell lines was inhibited. Curcumin treatment enhanced 
the endogenous expression of PIAS3 and consequently, 
the proliferation and cell activity were reduced in Calu-
1 cells109. Another study proved that curcumin-induced 
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apoptosis was dependent on microRNA-192-5p/215 
induction, and the transcriptional target of miR-192-5p/215 
was XIAP (X-linked inhibitor of apoptosis), which confirmed 
that miR-192-5p/215-XIAP pathway was a crucial target 
in non-small cell lung cancer110. A study underlined that 
curcumin treatment stimulated DNA impairment in human 
lung cancer cells. Curcumin also restrained the expression 
of DNA-repair proteins such as MDC1 (mediator of damage 
checkpoint 1), 14-3-3 protein σ, BRCA1 (breast cancer 
susceptibility gene 1) and MGMT (O6-methylguanine-DNA 
methyltransferase)111. Some studies on animals evaluated 
the anti-cancer properties of curcumin on lung cancer 
cells. In orthotopic human NSCLC xenografts, tumour 
growth was notably brought down by curcumin, and the 
life expectancy of treated athymic mice was significantly 
increased112,113. Moreover, curcumin exerted inhibitory 
effects on JAK2 activity and reduced tumour spheres 
of H460 cells by disrupting the JAK2/STAT3 signalling 
pathway. Tumor growth was greatly suppressed by 
curcumin in a lung cancer xenograft mouse model114.

Hepatobiliary cancer
In hypoxia tumors, the transcription factor HIF 

(Hypoxia-inducible factor)-1 is essential for angiogenesis 
and cell survival. Curcumin lowered the levels of HIF-
1α and HIF-2α proteins in hypoxia, while in normoxia, 
the transcriptional activity of HIF and the ARNT (aryl 
hydrocarbon receptor nuclear translocator) protein levels 
were reduced due to curcumin. Additionally, curcumin also 
adversely affected the survival of Hep3B hepatoma cells115. 
Curcumin protected and reversed diethylnitrosamine 
(DENA)-induced hepatocarcinogenesis and damages 
caused by it in rats116. Curcumin significantly lowered 
the gene expression of IL-2 (interleukin-2) and IL-6 
(interleukine-6), levels of IL-2, IL-6, α fetoprotein (AFP), 
malondialdehyde (MDA) and alanine aminotransferase 
(ALT) in serum; while the gene expression and activities  
of glutathione reductase, glutathione peroxidase, 
superoxide dismutase, and catalase were greatly 
enhanced by curcumin. The expression of caspase-3 
was enhanced, while there was a reduction in the high 
expression of angiogenic and anti-apoptotic transforming 
growth factor-β. Curcumin also regularized lipid peroxides 
and liver marker enzymes (AST and ALT)117. Furthermore, 
the growth of liver cancer in nude mice was effectively 
delayed by curcumin, in a dose-dependent manner118.

A study conducted on cholangiocarcinoma cells 
revealed that apoptosis and antiproliferation in CCA cells 
were induced by curcumin. The formation of superoxide 
anion and reduction in the redox potential of the cell-
induced apoptosis. The up-regulation of the Bax protein 

and TP53 gene was related to apoptosis and oxidative 
stress119. The feasibility of cholangiocarcinoma cells was 
reduced in comparison to the control. Also, the caspase 
activity and cleaved poly (ADP) ribose polymerase 
expression was reinforced, indicating that curcumin-
induced apoptosis in CCA cells120.

Breast cancer
Curcumin lowered the levels of HIF-1α and HIF-2α 

proteins in normoxia, while HIF transcriptional activity 
and ARNT protein levels in MCF-7 breast carcinoma cells 
were lowered in both normoxia and hypoxia115. Moreover, 
curcumin treatment suppressed the mitogen-activated 
protein kinase, PKC-α(protein kinase C-α) and nuclear 
factor-κB pathway, leading to reduction of (TPA)-induced-
(MMP)-9 expression and cell invasion121. Additionally, the 
migration of breast carcinoma stem cells was aggravated 
because of the destruction of E-cadherin. Curcumin 
impeded β-catenin nuclear translocation. Thus restoring 
E-cadherin expression and obstructing the migration of 
breast cancer stem cells122.

An aggressive breast cancer phenotype, unresectable 
triple-negative breast carcinoma is caused due to the 
absence of the progesterone receptor, estrogen receptor 
and EGFR2. Curcumin inhibited the aggressive cell  
division of triple-negative breast cancer by the down-
regulation of EGFR signalling pathway123,124. Besides, 
using curcumin as an adjuvant during 5-fluorouracil 
treatment augmented the therapeutic efficiency of 
5-fluorouracil by maintaining the viability of normal cells. 
Thus allowing higher dosage and prolonged treatment  
with 5-fluorouracil125. Additionally curcumin therapy 
sensitized retinoic acid-resistant triple negative breast 
carcinoma cell to retinoic acid mediated growth  
reduction126. Investigators have looked into the 
antitumorigenic potential of curcumin in breast cancer 
using a number of animal models. One such study 
corroborated that curcumin inhibited angiogenesis and 
tumour growth in mice breast cancer models, which was 
associated with the down-regulation of PECAM-1, p65 
and cyclin D1expressions127. Further, it was demonstrated 
that curcumin exhibited immunomodulatory effects on 
metastatic breast cancer by altering M1/M2 macrophage 
balance in tumors128. Similarly, curcumin treatment caused 
a notable decrease in cell proliferation and tumour volume 
in breast cancer xenografts129.

Gastric cancer
Treatment of curcumin in gastric cancer cells induced 

loss in membrane potential of mitochondria and elevated 
the apoptosis rate, which was associated with enervated 
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ATP-sensitive potassium channel (KATP) opening130. 
Additionally, KLF4 (Krüppel-like factor 4) was a potent 
therapeutic target in human gastric carcinoma cells, and 
curcumin can act as a promising therapeutic strategy 
in gastric cancer. KLF4 overexpression in combination 
with curcumin prompted apoptosis and hampered the 
proliferation and invasion of gastric cancer cells131. 
Furthermore, curcumin reduced the density of lymphatic 
vessels in an in vivo gastric cancer model. Detection 
of downregulation of Prospero homeobox 1, LYVE-
1(lymphatic vessel endothelial receptor), VEGFR-3 mRNA 
expression and podoplanin underlined that curcumin 
inhibited lymph node metastasis in gastric cancer132. 
Another study shed light on the lowering of expression 
of glycolytic enzymes and induction of G2/M phase cell 
cycle arrest by curcumin, hence restricting the growth 
of cancerous cells133. It was revealed in an in vivo study 
that a blend of 5-fluorouracil/oxaliplatin and curcumin 
showed effective reduction of BGC-823 tumour expansion 
in xenografts134.

Colorectal cancer
Curcumin averted adenomas and aberrant crypt foci 

(ACF) colorectal cancer model in mice. The synthesis 
of 5-HETE (5- hydroxyeicosatetraenoic acid) and PGE2 
(pro-carcinogenic eicosanoids prostaglandin E2) was 
inhibited by curcumin, thus attenuating carcinogenesis 
in colon cancer cells135. Besides, curcumin checked 
the development of human colon cancer cell lines and 
induced apoptosis via DNA fragmentation, with nuclear 
condensation136. In addition, curcumin subdued the 
activity and expression of hexokinase-II and caused the 
dissociation of hexokinase-II, leading to mitochondrial-
mediated apoptosis137. Furthermore, curcumin involved 
epigenetic DLEC1 to exert an inhibitory effect on 
anchorage-independent growth of human colon cancer 
cells138. Moreover, 5-fluorouracil treatment was found 
ineffective for colorectal cancer, but the blend of curcumin 
and 5-fluorouracil reduced the chemoresistance of 
carcinoma due to suppressed proliferation in 5-fluorouracil 
resistant cells and enhanced cellular apoptosis. The EMT-
suppressive microRNAs in cells resistant to 5-fluorouracil 
were upregulated by curcumin139.

Prostate cancer
In prostate cancer, the invigorated activity of androgen 

receptors (AR) and amplification of co-activator protein 
p300 and cAMP response element-binding protein (CREB)  
result in hostile phenotypes and failure of hormone 
therapy. Curcumin reduced the acetylation of histone 
and altered the chromatin landscape, consequently 
suppressing the CBP and p300 habitation at sites of 

AR activity, thereby declining tumor enlargement and 
delaying the emergence of castrate-resistant disease140. 
Moreover, curcumin treatment curbed the inhibitor of DNA 
binding one by small interfering RNA, inhibiting prostate 
cancer cell proliferation (PC-3) and growth of xenografted 
tumours in mouse model141. Similarly, the development 
of PC-3 tumour in SCID (severe combined immune 
deficiency) mice with PC-3 xenograft was inhibited by 
the combination of curcumin and α-tomatine142. A recent 
study demonstrated the synergistic effect of curcumin 
with metformin on LNCaP prostate cancer cell lines. 
This combination induced apoptosis, Bax expression 
and cytotoxicity within 48 h and could be considered as 
a potent anti-cancer agent143.

Uterine cancer
Treatment with curcumin-based cream resulted in 

the selective elimination of HPV+ cervical cancer cells 
and the repression of EGFR expressions and antigen 
E6 transformation, which simultaneously induced p53. 
The study revealed that the intravaginal application 
of curcumin-based vaginal cream in mice eradicated 
HPV+ cancer cells without harming the non-cancerous 
cells144. In addition, curcumin arrested the proliferation 
and apoptosis of inhuman endometrial carcinoma cells 
by depressing their AR expressions through the Wnt 
signal pathway145. Another study revealed that the 
expression of argyrophilic nucleolar organization region 
protein (AgNOR) was much higher in malignant cells 
than in normal cells. By hypermethylation of global DNA 
in HeLa cells, a decrease in AgNOR protein pools was 
induced by curcumin. Thus, curcumin might be effective 
against HeLa cells at low micromolar concentrations146. 
In addition, curcumin hindered angiogenesis and tumour 
growth in cervical cancer xenografted mice by repressing 
COX-2 (cyclooxygenase-2), EGFR and VEGF (vascular 
endothelial growth factor)147.

Hematopoietic cancer
Curcumin, alone or incorporated with other drugs, 

induced apoptosis in hematopoietic cancer. For instance, 
the overexpression of the WT1 (Wilms’ tumour) gene in 
patients who have acute myeloid leukaemia was strongly 
repressed via protein kinase C inhibitor, indicating that 
curcumin attenuated external WT1 (+/+) expression 
during post-translational process148,149. The exogenous 
WT1 (+/+) half-life was also reduced148. Another similar 
study demonstrated that curcumin inhibited clonogenicity 
and cell proliferation in a dose-dependent way and also 
arrested the cell cycle at G2/M phase. WT1 levels were also 
lowered by curcumin149. In addition, a study unveiled that 
the treatment of curcumin in the presence of Cu2+ in CCRF-
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CEM human T-cell leukaemia cells damaged the DNA 
plasmids almost completely. Results were not the same 
on treatment with curcumin or Cu2+ alone150. In leukemic 
cells derived from acute promyelocytic leukaemia (APL), 
curcumin treatment hindered cell growth and promoted 
cellular apoptosis. Curcumin-induced apoptosis was 
stimulated by an augmentation in endoplasmic reticulum 
(ER) stress, which resulted in misfolded N-CoR protein 
accumulation in ER151. Further, in Burkitt’s lymphoma cell 
lines, pretreatment of curcumin caused sensitization of 
lymphoma cells to IR-induced apoptosis, and G2/M phase 
arrest was increased152. Moreover, curcumin-induced rapid 
generation of ROS incited apoptosis in HuT-78 cells by 
regulating different cell death and cell survival pathways153.

Other cancers
Curcumin also exhibits anti-cancer properties in 

various other types of cancers. For example, curcumin 
is a potent alternative for the treatment of glioblastomas. 
Curcumin reduced NF-κB pathways and the activation 
of phosphatidylinositol 3-kinase (PI3K)/PKA, followed by 
the down-regulation of Bcl-xl NF-κB-regulated protein 
and impelled mitochondrial dysfunction154. Furthermore, 
curcumin restricts cellular growth, migration and invasion 
in pancreatic cancer. Curcumin also prompted cellular 
apoptosis, related with enhanced expression of miR-7 
and reduced expression of SET-8, a target of miR-7155. 
In another study, in a dose-dependent fashion, curcumin 
repressed the cell incursion, activity, and migration abilities 
of K1 thyroid cancer cells. The expression and activity 
of MMP-9 were also suppressed by curcumin. Besides, 
curcumin caused the inhibition of hypoxia-induced ROS 
regulation and reduced mRNA expression levels of HIF-1α 
in K1 cells156,157. Additionally, in head and neck squamous 
cell carcinoma (HNSCC) cell lines, the pro-apoptotic Bik 
was elevated by curcumin, while survival signalling by 
NF-κB and Akt was down-regulated158. Several cancers, 
such as oral squamous cell carcinoma159 and peripheral 
nerve sheath tumors160,  can also be effectively treated 
with curcumin.

CLINICAL STUDIES
Several clinical studies validate curcumin’s 

effectiveness, safety and tolerability against cancer161. 
Oral administration of curcumin at 6 g day-1 for 4-7 weeks 
produced no toxicity in patients162. Even at high doses 
of 12 g day-1, curcumin was found safe but had poor 
bioavailability163,164. In the phase I, dose escalation clinical 
study of liposomal curcumin (Lipocurc™), the maximum 
safe dosage for anti-cancer treatments in patients with 
metastatic or locally advanced cancer was marked down to 
300 (mg  m-2) (NCT02138955)165. In patients with advanced 

breast cancer with metastasis, the intravenous treatment 
of curcumin combined with paclitaxel demonstrated that it 
did not cause any major health concerns (NCT03072992). 
It was, however, helpful in reducing fatigue166. In random, 
double-blind, placebo-controlled clinical trial, severity 
of dermatitis caused by radiation in breast carcinoma 
patients was reduced by orally administering curcumin 
(6 g daily) during radiotherapy167. In another study, the 
maximum recommended dose of curcumin in metastatic 
breast cancer was 6000 mg day-1, weekly for 21 days, 
in combination with the standard dose of docetaxel168. A 
clinical study (phase II) on the anti-tumorigenic effects of 
curcumin on colorectal cancer revealed that administration 
of curcumin at 2 g and 4g in patients caused the prevention 
of colorectal neoplasia and decreased ACF levels 150. 
Further, the general health of patients with colorectal 
cancer was boosted by curcumin administration through 
enhanced expression of p53 molecule in tumour cells and 
consequent increase in cellular apoptosis169.

In phase I and II clinical trials of curcumin, the tolerable 
and safe dose of curcumin in combination with gemcitabine 
was estimated to be eight g day-1 170,171 in patients with 
advanced stages of pancreatic cancer. Low doses of 
lapidated curcumin at 80 mg day-1 in middle-aged people 
(40-60 years old) promoted improvement of health172. A 
combination of curcumin and quercetin at doses of 480 
mg and 20 mg, respectively, has shown a reduction in 
polyp numeral and mass of intestinal adenomas in patients 
with adenomatous polyposis by oral administration for six 
months. Treatment with curcumin (480 mg) combined with 
quercetin (20 mg) orally three times a day for six months 
resulted in a reduction in polyp numeral and mass of 
ileorectal adenomas in patients with familial adenomatous 
polyposis (FAP)173. Treatment with curcumin and piperine 
negated lipid peroxidation and further enhanced the GSH 
levels of 20 tropical pancreatitis patients174. The treatment 
of curcumin combined with isoflavones in a clinical trial 
indicated that they synergistically affect the production 
of PSA in prostate cells and exhibit anti-androgenic  
effects175. In ulcerative colitis, administration of curcumin 
(3g day-1) in mesalamine-treated patients caused 
subsidence in patients with mild-moderate disease 
(NCT01320436)176.

FUTURE PROSPECTS
Curcumin is a pleiotropic molecule. Due to its unique 

chemical structure, it has diverse therapeutic and biological 
effects on cancer. It also showcases antioxidant, anti-
arthritic, anti-microbial and anti-angiogenic properties. 
Clinical studies reveal that it is safe for humans, causing 
no significant side effects. However, its lipophilic character 
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and below-par solvability in aqueous medium curtails its 
applicability in biological systems. Other reasons for its low 
bioavailability are its rapid metabolism, poor absorption 
and quick systemic elimination from the body. To overcome 
these shortcomings, numerous nano-formulations of 
curcumin, such as nanoparticles, cyclodextrins, micelles, 
and liposomes, have been developed, which have proven 
to be quite promising and can increase their efficacy and 
bioavailability.

Further, these act as nano-delivery vehicles and 
enhance the ease of administration of curcumin and 
reduce any toxicity caused. However, these formulations 
of curcumin are non-target-specific. Hence, reforms 
in target-specific delivery need to be contemplated. 
Many clinical trials have been conducted, but there is 
still scope for future large-scale trials to explore the 
potentiality of curcumin as an anti-neoplastic drug, as 
an adjuvant therapy in cancer and in the treatment of 
several other diseases. High doses of curcumin have 
been administered in most clinical trials, which seems 
rather impractical. Curcumin exhibits synergistic effects 
with various anti-cancer drugs such as cisplatin, avastin, 
paclitaxel, docetaxel, etc. and enhances their therapeutic 
action. More such combinations need to be discovered, 
which can reduce the side-effects of traditional therapies 
and facilitate better recovery of patients. Hence, more 
thorough studies on curcumin-based combination therapy 
are required.

CONCLUSION

Cancer is a notorious disease, posing a huge threat 
to humankind. Chemotherapy is a treatment modality in 
cancer that produces serious side effects and toxicity in 
patients. Hence, scientists are in search of novel drugs that 
are not only efficient but also non-toxic. Phytochemicals 
such as curcumin and its natural and synthetic analogues 
have shown cancer-preventing and eradicating effects in 
humans, with little or no considerable side effects. With a 
few modulations in the basic pharmacophore structure of 
curcumin, its therapeutic action may increase manifold.

Moreover, nano-encapsulation of curcumin enhances 
its effectiveness and bioavailability, irrespective of its 
water insolubility. It is effective against various cancers 
when used alone or in combination with other drugs. Its 
therapeutic potential and bio-activity necessitate a more 
detailed inspection of the mechanism of its action. Further, 
advancement in target specificity, mode of administration 
and wide clinical trials are recommended to validate it as 
a drug safe for human use.
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